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Abstract
Background: Diffusing alpha-emitters Radiation Therapy (“DaRT”) is a new
method, presently in clinical trials, which allows treating solid tumors by alpha
particles.DaRT relies on interstitial seeds carrying 𝜇Ci-level 224Ra activity below
their surface, which release a chain of short-lived alpha emitters that spread
throughout the tumor volume primarily by diffusion. Alpha dose calculations in
DaRT are based on describing the transport of alpha emitting atoms, requiring
new modeling techniques.
Purpose: A previous study introduced a simplified framework, the “Diffusion-
Leakage (DL) model”, for DaRT alpha dose calculations, and employed it to a
point source,as a basic building block of arbitrary configurations of line sources.
The aim of this work, which is divided into two parts, is to extend the model to
realistic seed geometries (in Part I), and to employ single-seed calculations to
study the properties of DaRT seed lattices (Part II).Such calculations can serve
as a pragmatic guide for treatment planning in future clinical trials.
Methods: We derive a closed-form asymptotic solution for an infinitely long
cylindrical source, and extend it to an approximate time-dependent expres-
sion that assumes a uniform temporal profile at all radial distances from the
source. We then develop a finite-element one-dimensional numerical scheme
for a complete time-dependent solution of this geometry and validate it against
the closed-form expressions. Finally, we discuss a two-dimensional axisymmet-
ric scheme for a complete time-dependent solution for a seed of finite diameter
and length.Different solutions are compared over the relevant parameter space,
providing guidelines on their usability and limitations.
Results: We show that approximating the seed as a finite line source com-
prised of point-like segments significantly underestimates the correct alpha
dose, as predicted by the full two-dimensional calculation. The time-dependent
one-dimensional solution is shown to coincide to sub-percent-level with the two-
dimensional calculation in the seed midplane, and maintains an accuracy of a
few percent up to ∼ 2 mm from the seed edge.
Conclusions: For actual treatment plans, the full two-dimensional solution
should be used to generate dose lookup tables, similarly to the TG-43 format
employed in conventional brachytherapy. Given the accuracy of the one-
dimensional solution up to∼ 2 mm from the seed edge it can be used for efficient
parametric studies of DaRT seed lattices.
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2 SINGLE-SEED CALCULATIONS IN 1D AND 2D

1 INTRODUCTION

The radiobiology of alpha particles makes them an
appealing tool for cancer treatment.1 As a high-LET
form of radiation they create irreparable clustered DNA
lesions, and their cell-inactivation ability is much less
affected by hypoxia or the mitotic cycle stage compared
to low-LET radiation. In addition, their < 90 𝜇m range
can guarantee the sparing of surrounding healthy tis-
sue, albeit requiring that the atoms emitting them are
brought to the immediate vicinity of the cancer cells.
Multiple studies are ongoing with the aim of bring-
ing Targeted Alpha Therapy (TAT) to clinical use, with
alpha emitters bound to antibodies, small molecules or
nano- and micro-particles.2–4 Presently, the only FDA-
approved alpha-particle therapy involves using 223RaCl2
to treat bone metastases in castration-resistant prostate
cancer.5

While TAT generally focuses on single-cell or
micrometastatic disease, Diffusing alpha-emitters Radi-
ation Therapy (DaRT)6 harnesses alpha particles for the
treatment of solid tumors. In DaRT, tumors are treated
with sources (“seeds”) carrying a few 𝜇Ci 224Ra activ-
ity below their surface. Once inside the tumor, the seeds
continuously release from their surface the short-lived
daughter atoms of 224Ra: 220Rn, 216Po, 212Pb, 212Bi,
212Po and 208Tl.These spread by diffusion (with possible
contribution by convective effects), creating—primarily
through their alpha decays—a “kill-region” measuring
several millimeters in diameter around each seed. The
full decay chain,along with the isotopes’half -lives,decay
modes and mean alpha particle energies is shown in
Figure 1.

DaRT was, and still is, extensively investigated in in
vitro and in vivo preclinical studies on a large number
of cancer types,as a stand-alone treatment,6–10 in com-
bination with chemotherapy,11–14 and as a stimulator of
a local and systemic anti-tumor immune response.15–22

Since 2017, DaRT is under clinical investigations in
human patients, starting with locally advanced and
recurrent squamous cell carcinoma (SCC) of the skin
and head and neck.23 Results of the first-in-human
trial were highly promising in terms of both efficacy
and safety: all treated tumors shrank drastically (by ∼
30% − 100%), beginning in the first few days after the
treatment, with ∼ 80% of the tumors exhibiting complete
response. Adverse effects were mild to moderate, with
no observable local or systemic radiation-induced dam-
age to healthy tissue. The alpha dose to all organs,
resulting from 212Pb leaving the tumor through the blood,
was calculated to be on the centigray level, with blood
and urine activity measurements consistent with the
predictions of an ICRP-based biokinetic model.24 In
one patient, untreated lesions shrank and disappeared
when one lesion was treated with DaRT (in the absence

F IGURE 1 The 224Ra decay chain. Data taken from the NuDat3
database website.37

of any other treatment), suggesting an abscopal
effect.25

A recent publication26 provided an in-depth descrip-
tion of the underlying physics of DaRT. As a first step
toward treatment planning, it introduced a simplified the-
oretical approach: the “Diffusion-Leakage (DL) model”.
Its underlying assumptions are that the medium into
which the daughters of 224Ra are released is homo-
geneous, isotropic and does not change with time, and
that convective effects have a short correlation length
and can therefore be described by an effective isotropic
diffusion term. A further assumption is that 212Pb and
212Bi can be cleared from the tumor through the blood
at a uniform local rate. It was shown that of the six
radionuclides released from the source, one only needs
to model the migration of 220Rn, 212Pb and 212Bi as
their respective short-lived daughters are in local secular
equilibrium. The analysis focused on the alpha parti-
cle dose of an ideal point source, which constitutes the
basic building block for any arbitrary configuration of line
sources.

This work forms the first part of a two-part publi-
cation, where we extend the alpha dose modeling of
DaRT to cylindrical seeds of finite diameter and length.
In this part the focus is on single-seed calculations,
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SINGLE-SEED CALCULATIONS IN 1D AND 2D 3

while the second part addresses the properties of DaRT
seed lattices. We derive closed-form asymptotic and
approximate time-dependent solutions to the DL model
for infinite cylindrical sources, and describe numerical
schemes for solving the complete time-dependent prob-
lem in both one and two dimensions. We compare the
2D numerical solution to the 1D case and other approx-
imations, and discuss the conditions under which the
closed-form and 1D solutions can be used with sufficient
accuracy. Detailed descriptions of an extensive experi-
mental study on the DL model parameters in multiple
tumor types, the dose contribution of beta and gamma
emissions by 224Ra and its daughters, and a micro-
dosimetry analysis of cell survival and tumor control
probabilities will be covered in separate publications.

2 THE DIFFUSION-LEAKAGE MODEL
IN CYLINDRICAL COORDINATES

The underlying assumptions of the DL model26 are as
follows:

∙ The migration of atoms inside the tumor is gov-
erned by diffusion. Convective effects have random
directions and can therefore be accounted for by an
effective diffusion coefficient.

∙ The tissue is homogeneous, isotropic, and time-
independent. All coefficients appearing in the equa-
tions are therefore constant.

∙ It is sufficient to model the migration of 220Rn, 212Pb
and 212Bi. 216Po, 212Po and 208Tl are in local secular
equilibrium with their respective parents.

∙ 212Pb migration can be described using a single
effective diffusion coefficient.

∙ 212Pb atoms reaching blood vessels are cleared from
the tumor on a time scale that is constant throughout
the tumor.

∙ 220Rn is sufficiently short-lived to fully decay inside
the tumor.

∙ 212Bi can be cleared from the tumor similarly to 212Pb
(but in practice this is a second-order effect).

We consider the case of a cylindrical source of radius
R0 and length l along the z-axis, and assume axial
symmetry. Under the above assumptions, in cylindrical
coordinates (r, z) the equations describing the dynamics
of the main daughter atoms in the decay chain— 220Rn,
212Pb and 212Bi—are:

𝜕nRn

𝜕t
= DRn

(
1
r
𝜕

𝜕r

(
r
𝜕nRn

𝜕r

)
+
𝜕2nRn

𝜕z2

)
− 𝜆RnnRn (1)

𝜕nPb

𝜕t
= DPb

(
1
r
𝜕

𝜕r

(
r
𝜕nPb

𝜕r

)
+
𝜕2nPb

𝜕z2

)
+ 𝜆RnnRn − (𝜆Pb + 𝛼Pb)nPb (2)

𝜕nBi

𝜕t
= DBi

(
1
r
𝜕

𝜕r

(
r
𝜕nBi

𝜕r

)
+
𝜕2nBi

𝜕z2

)
+𝜆PbnPb − (𝜆Bi + 𝛼Bi)nBi (3)

where nRn, nPb, nBi , DRn, DPb, DBi and 𝜆Rn, 𝜆Pb, 𝜆Bi are
the number densities, diffusion coefficients and decay
rate constants of 220Rn, 212Pb and 212Bi, respectively.
𝛼Pb and 𝛼Bi are the leakage rate constants of 212Pb and
212Bi accounting for clearance through the blood.

The boundary conditions, for r → R0 and |z| ≤ l∕2
(z = 0 at the seed midplane), are:

2𝜋R0jRn(R0, z, t) = Pdes(Rn)
Γsrc

Ra(0)

l
e−𝜆Rat (4)

2𝜋R0jPb(R0, z, t) =
(

Peff
des(Pb) − Pdes(Rn)

)Γsrc
Ra(0)

l
e−𝜆Rat

(5)

jBi(R0, z, t) = 0 (6)

where jx = −Dx𝜕nx∕𝜕r is the radial component of the
diffusion current, with x representing 220Rn, 212Pb and
212Bi. Γsrc

Ra(0) is the initial 224Ra activity on the source
(assumed to be uniform) and 𝜆Ra is the 224Ra decay
rate constant. Pdes(Rn) and Peff

des(Pb) are the des-
orption probabilities of 220Rn and 212Pb, respectively,
representing the probability that a decay of a 224Ra
on the source will lead to the release of either a
220Rn or 212Pb atom into the tumor; we use the term
“effective” for Peff

des(Pb), because it includes several
emission pathways.26 For |z| > l∕2, jx(0, z, t) = 0 for the
three isotopes.

The solution for Equations (1)–(3) provides the num-
ber densities nRn(r, z, t), nPb(r, z, t) and nBi(r, z, t). The
alpha dose is calculated by assuming that the range of
alpha particles is much smaller than the scale govern-
ing the diffusive spread, such that their energy is fully
deposited at their emission point. The dose from source
insertion to time t is comprised of two contributions: one
is arising from the summed alpha particle energy of the
pair 220Rn+216Po,and the other from the alpha decay of
either 212Bi or 212Po:

Dose𝛼(RnPo; r, z, t) =
E𝛼(RnPo)

𝜌 ∫
t

0
𝜆RnnRn(r, z, t′)dt′

(7)

Dose𝛼(BiPo; r, z, t) =
E𝛼(BiPo)

𝜌 ∫
t

0
𝜆BinBi(r, z, t′)dt′ (8)

where E𝛼(RnPo) = (6.288 + 6.778) MeV = 13.066 MeV
is the total alpha particle energy of 220Rn and 216Po,
E𝛼(BiPo) = 7.804 MeV is the weighted-average energy
of the alpha particles emitted by 212Bi and 212Po,
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4 SINGLE-SEED CALCULATIONS IN 1D AND 2D

and 𝜌 is the tissue density (assumed below to be
1.0 g/cm3). In what follows, we define the “asymp-
totic dose” as the dose delivered from source insertion
to infinity—in practice, over the course of several
weeks.

The spread of 220Rn, 212Pb and 212Bi is governed by
their respective diffusion lengths,26 defined as-

LRn =

√
DRn

𝜆Rn − 𝜆Ra
(9)

LPb =

√
DPb

𝜆Pb + 𝛼Pb − 𝜆Ra
(10)

LBi =

√
DBi

𝜆Bi + 𝛼Bi − 𝜆Ra
(11)

An important parameter in the DL model is the 212Pb
leakage probability Pleak(Pb), defined as the probability
that a 212Pb atom released from the source is cleared
from the tumor by the blood before its decay.26 There-
fore, the leakage probability reflects the competition
between 212Pb radioactive decay and clearance through
the blood, such that:

Pleak(Pb) =
𝛼Pb

𝜆Pb + 𝛼Pb
(12)

The diffusion length is a gross measure of the aver-
age displacement of an atom from the location of its
parent’s decay, to the point of its decay or clearance
by the blood. For a point source the radial dependence
of the number densities and alpha dose components
comprises terms proportional to e−r∕Lx∕r . As discussed
previously,26 published data on the diffusion coefficients
of noble gases in water and tissue27,28 lead to an a-
priori estimate LRn ∼ 0.2 − 0.4 mm, where the higher
limit reflects the possibility of some enhancement of
effective diffusion by the tumor vascular system. For
212Pb, the mass range of known lead-binding proteins,
5 − 280 kDa,29 corresponds to diffusion coefficients on
the scale of ∼ 3 ⋅ 10−8 − 1 ⋅ 10−6 cm2/s.30–32 Consider-
ing the observed typical range Pleak(Pb) ∼ 0.2 − 0.8 this
translates to a broad a-priori estimate LPb ∼ 0.2 − 2 mm.
Measurements in mice-borne tumors, to be described in
detail in separate publications, indicate that both 30 min
and several days after seed insertion the activity pat-
tern is governed by an effective diffusion length typically
in the range of ∼ 0.2 − 0.6 mm, depending on the tumor
type and size.When analyzed in the framework of the DL
model, the effective diffusion length measured 30 min
after seed insertion is interpreted as LRn due to the late
build-up of 212Pb. The observed similar range of values
of the effective diffusion length several days after seed
insertion brings up the possibility that the long-term
spread is also governed by 220Rn, that is, that LPb ≲ LRn.

In the analysis below we allow both diffusion lengths to
vary across roughly similar ranges. When considering
a high-diffusion scenario in tissue (where the leading
diffusion parameter is greater than 0.5 mm), we take
a conservative approach of LPb > LRn. This approach
is conservative because it implies that only one alpha
particle (of 212Bi/212Po) dominates the dose at large
distances from the seed, while in the radon-dominated
case the dose at large distances results from up to three
alpha emissions: by 220Rn, 216Po and—if 212Pb is not
cleared by the blood—by 212Bi/212Po.As for the possible
redistribution of 212Bi relative to 212Pb, measurements
of the local 212Bi/212Pb activity ratio in SCC tumors indi-
cate that the two isotopes are, within error, in secular
equilibrium driven by 224Ra,6 which in turn implies that
𝛼Bi ≪ 𝜆Bi and that LBi ≲ 0.2LPb.26 In what follows we
assume 𝛼Bi = 0 and LBi = 0.1LPb.

3 ASYMPTOTIC AND APPROXIMATE
TIME-DEPENDENT SOLUTIONS FOR AN
INFINITELY LONG CYLINDRICAL SOURCE

At long times after source insertion into the tumor
the number densities reach an asymptotic form:26

nasy
x (r, z, t) = ñx(r, z)e−𝜆Rat. For 220Rn this condition is

satisfied within several minutes throughout the tumor,
while for 212Pb and 212Bi the asymptotic form is attained
within a few days, depending on the distance from
the source.

Appendix A provides a derivation of the closed-form
asymptotic solution of the DL model equations for an
infinitely long cylindrical source of radius R0. For 220Rn
the solution is:

nasy
Rn (r, t) = ARn K0

(
r

LRn

)
e−𝜆Rat (13)

where:

ARn =
Pdes(Rn)

(
Γsrc

Ra(0)∕l
)

2𝜋DRn ⋅ (R0∕LRn) ⋅ K1(R0∕LRn)
(14)

In these expressions K0(𝜉) and K1(𝜉) are modified
Bessel functions of the second kind:

K0(𝜉) = ∫
∞

0

cos (𝜉t)√
t2 + 1

dt (15)

K1(𝜉) = −
dK0

d𝜉
(16)

K0(r∕L) is a steeply-falling function,and is the cylindri-
cal analogue to exp(−r∕L)∕(r∕L) appearing in expres-
sions for the number densities and dose of the point
source.26 As shown in Appendix A, for 212Pb we have:
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SINGLE-SEED CALCULATIONS IN 1D AND 2D 5

nasy
Pb (r, t) =

(
APb K0

(
r

LRn

)
+ BPb K0

(
r

LPb

))
e−𝜆Rat

(17)
where:

APb =
L2

RnL2
Pb

L2
Rn − L2

Pb

𝜆Rn

DPb
ARn (18)

BPb =

(
Peff

des(Pb) − Pdes(Rn)
)(
Γsrc

Ra(0)∕l
)

2𝜋DPb ⋅ (R0∕LPb) ⋅ K1(R0∕LPb)

− APb
(R0∕LRn) ⋅ K1(R0∕LRn)
(R0∕LPb) ⋅ K1(R0∕LPb)

(19)

Finally, for 212Bi the solution is:

nasy
Bi (r, t) =

(
ABi K0

(
r

LRn

)
+ BBi K0

(
r

LPb

)
+ CBi K0

(
r

LBi

))
e−𝜆Rat (20)

where:

ABi =
L2

RnL2
Bi

L2
Rn − L2

Bi

𝜆Pb

DBi
APb (21)

BBi =
L2

PbL2
Bi

L2
Pb − L2

Bi

𝜆Pb

DBi
BPb (22)

CBi = −
(R0∕LRn) ⋅ K1(R0∕LRn)ABi + (R0∕LPb) ⋅ K1(R0∕LPb)BBi

(R0∕LBi) ⋅ K1(R0∕LBi)

(23)

As shown in Appendix A the expressions above can also
describe an infinite line source in the limit R0∕Lx → 0.

To approximately account for the buildup stage of the
solution, one can assume that it is uniform throughout
the tumor, that is, independent of the distance from the
source. Under this “0D” temporal approximation26 for a
point source and adapted here for the cylindrical case,
one can write:

n0D
Rn(r, t) = ARn K0

(
r

LRn

)(
e−𝜆Rat − e−𝜆Rnt

)
(24)

and

n0D
Bi (r, t) =

(
ABi K0

(
r

LRn

)
+ BBi K0

(
r

LPb

)
+ CBi K0

(
r

LBi

))(
e−𝜆Rat − e−(𝜆Pb+𝛼Pb)t

)
(25)

Under this approximation, the asymptotic alpha dose
components are:

Doseasy
𝛼 (RnPo; r) =

E𝛼(RnPo)
𝜌

𝜆RnARn K0

(
r

LRn

)
(𝜏Ra − 𝜏Rn)

(26)
and:

Doseasy
𝛼 (BiPo; r) =

E𝛼(BiPo)
𝜌

𝜆Bi(
ABi K0

(
r

LRn

)
+ BBi K0

(
r

LPb

)
+ CBi K0

(
r

LBi

))(
𝜏Ra − 𝜏eff

Pb

)
(27)

where 𝜏Ra = 1∕𝜆Ra, 𝜏Rn = 1∕𝜆Rn and 𝜏eff
Pb = 1∕(𝜆Pb +

𝛼Pb). The error introduced by the 0D approximation is of
the order of the ratio between mean lifetimes of 220Rn
and 212Pb and that of 224Ra, that is,𝜏Rn∕𝜏Ra ∼ 10−4 and
𝜏Pb∕𝜏Ra ∼ 0.1, respectively.

4 FINITE-ELEMENT ONE- AND
TWO-DIMENSIONAL TIME-DEPENDENT
SOLUTIONS FOR CYLINDRICAL
SOURCES

4.1 Solution in one dimension

A complete time-dependent solution to the DL model
can be found numerically using a finite-element
approach. For the one-dimensional case, that is, infi-
nite cylindrical or line source along the z-axis,Equations
(1)–(3) are solved setting 𝜕2nx∕𝜕z2 = 0. The solution
depends solely on the radial coordinate r . In the scheme
presented here, the domain is divided into concentric
cylindrical shells of equal radial width Δr . The radius
of the source is R0; Δr is chosen such that R0∕Δr is
an integer number, and Δr is considerably smaller than
LRn and LPb (LBi has a negligible effect on the solu-
tion, and hence should not constrain Δr). A fully implicit
scheme33 is employed, thereby assuring the solution is
stable. Starting with an initial time step Δt0, subsequent
time steps are changed adaptively according to the rela-
tive change in the solution between the current step and
the previous one, requiring a maximal relative change
𝜖tol. A Dirichlet boundary condition of zero number den-
sities is applied on the outer radius of the calculation
domain. A detailed description of the numerical scheme
is given in Appendix B.

The numerical solution was implemented in MAT-
LAB in a code named “DART1D”. As discussed in
Appendix B, the solution requires the inversion of a large
tridiagonal matrix, which is the most intensive part of
the calculation. It was found that employing the Thomas
algorithm34 for the inversion was approximately four
times faster than using MATLAB’s mldivide (‘\’) tool,
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6 SINGLE-SEED CALCULATIONS IN 1D AND 2D

F IGURE 2 Comparison between the DART1D and asymptotic solutions for the 212Pb number density 2 mm from the source (a) and the
ratio between the DART1D and asymptotic solutions of the 220Rn number density at various distances from the source axis (b). The distance
and time are normalized to 220Rn diffusion length and mean lifetime: r∗ ≡ r∕LRn, t∗ ≡ (𝜆Rn − 𝜆Ra)t.

F IGURE 3 Comparison between the DART1D 220Rn+216Po and 212Bi/212Po alpha doses and the 0D approximation for an infinite
cylindrical source. (a) Dose values, (b) DART1D/0D approximation ratios.

which was, in turn, about threefold faster than inverting
the matrix using inv(A). The code was found to con-
verge to a sub-percent level for a modest choice of the
discretization parameter values with a run time of sev-
eral seconds.For example, setting 𝜖tol = 10−2,Δr = 0.02
mm, and Δt0 = 0.1 s (for a domain radius Rmax = 7 mm
and a treatment duration of 30 d) resulted, with a run-
time of ∼ 0.5 s, in doses which were ∼ 0.5% away from
those obtained with 𝜖tol = 10−4,Δr = 0.01 mm and Δt0 =
0.1 s, with a run-time of ∼ 3 min (both on a modern lap-
top computer with an Intel i7 processor and 16 GB RAM
memory). The latter, more accurate run, was within 7 ⋅
10−4 of the 0D approximation for the 220Rn+216Po dose.

Figures 2 and 3 examine several aspects of the
numerical solution. Figure 2 shows the DART1D solu-
tion in comparison with the asymptotic expressions
in Equations (13) and (17). The left panel shows the
DART1D time-dependent 212Pb number density at a
distance of 2 mm from the source, along with the corre-

sponding asymptotic solution. On the right, we show the
ratio between the numerical and asymptotic solutions
for 220Rn, fRn ≡ nRn∕nasy

Rn , plotted for varying distances
from the source. The distances are given in units of
the 220Rn diffusion length, r∗ ≡ r∕LRn, and the time in
units of 1∕(𝜆Rn − 𝜆Ra) which is roughly the mean 220Rn
lifetime, t∗ ≡ (𝜆Rn − 𝜆Ra)t. The time-dependent solutions
converge to the asymptotic ones with a physical delay
that increases with the distance from the source. For
220Rn this occurs on the scale of minutes, while for
212Pb—over a few days. The adaptive time step allows
DART1D to handle both transients efficiently.

Figure 3a shows the DART1D 220Rn+216Po and
212Bi/212Po alpha dose components calculated for
the case LRn = 0.3 mm, LPb = 0.6 mm, LBi = 0.1LPb,
𝛼Pb = 𝜆Pb (i.e.,Pleak(Pb) = 0.5),and 𝛼Bi = 0.The source
radius is R0 = 0.35 mm, the 224Ra activity is 3 𝜇Ci/cm
and the desorption probabilities are Pdes(Rn) = 0.45
and Peff

des(Pb) = 0.55. The dose components are given
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SINGLE-SEED CALCULATIONS IN 1D AND 2D 7

at t = 30 d post-treatment. The numerical calculation
is compared to the 0D approximations, Equations (26)
and (27). The assumption of zero number density out-
side the calculation domain results in a departure from
the expected solution about two diffusion lengths away
from the boundary: ∼ 0.5 mm for 220Rn and ∼ 1 mm
for 212Bi and 212Po, whose spatial distribution is gov-
erned by the 212Pb diffusion length. This indicates that
the radial extent of the calculation domain should be
∼ 8 − 10 times larger than the largest diffusion length
of the problem. Figure 3b shows the ratio between the
DART1D-calculated dose components and the corre-
sponding 0D approximations. Except for the edge effect
at r → Rmax, the numerical solution for 220Rn+216Po
coincides with the 0D approximation at the level of
1 ⋅ 10−3 for 𝜖tol = 10−4, Δr = 0.01 mm and Δt0 = 0.1 s
up to r ∼ 5 mm. For 212Bi/212Po the 0D approximation
underestimates the dose at r < 1 mm and overestimates
it at larger distances because of the increasing delay
in the buildup of 212Pb as a function of r . The error is
∼ 5% − 10% at therapeutically relevant distances from
the source (around 2–3 mm).

4.2 Solution in two dimensions

To accurately calculate the alpha dose for a cylindrical
source of radius R0 and length l, one needs to solve the
DL model equations in two dimensions. The source lies
along the z-axis with z = 0 at its midplane.The DL equa-
tions are solved over a cylindrical domain extending from
r = 0 to r = Rmax and from z = −Zmax to z = +Zmax.
Both Rmax and Zmax − l∕2 should be much larger than
the largest diffusion length of the problem. In the 2D
scheme described here, the domain comprises ring ele-
ments of equal radial width Δr and equal z-width Δz.
The values of Δr and Δz are chosen such that R0∕Δr
and l∕(2Δz) are integer numbers, with Δr and Δz much
smaller than LRn and LPb. Unlike the 1D case, where the
source is infinitely long and only points with r > R0 are
considered, for a finite seed in 2D one must also solve
the equations for points above and below the seed, with
r < R0 and |z| > 1

2
l. Points inside the seed have zero

number densities of 220Rn, 212Pb and 212Bi. Similarly to
the 1D case, the number densities are taken as zero on
the outer boundaries of the domain. The initial time step
is Δt0, and time steps are changed adaptively to keep
the relative change in the solution in consecutive steps
smaller than a tolerance 𝜖tol.

Appendix C provides a detailed description of the 2D
numerical scheme, which was implemented in MATLAB
in a code named “DART2D”. The code takes roughly
0.5 h to run on a modern laptop (Intel i7 processor
with 16 GB RAM) for Δr = 0.005 mm, Δz = 0.05 mm,
𝜖tol = 0.01, Δt0 = 0.1 s, Rmax = 7 mm, Zmax = 10 mm
and a treatment time of 30 d. The most demanding

process is matrix inversion. Since the coefficient matrix
M is sparse and diagonal (with five non-zero diago-
nals), we used MATLAB’s spdiags() function, which
reduces memory requirements by saving only the diag-
onal non-zero elements of M,and allows the code to run
more efficiently.

The total alpha dose (sum of the 220Rn+216Po and
212Bi/212Po contributions) accumulated over 30 days of
DaRT treatment by a seed of finite dimensions is dis-
played in the rz plane in Figure 4a.The seed dimensions
are R0 = 0.35 mm and l = 10 mm. The initial 224Ra
activity of the seed is 3 𝜇Ci, with Pdes(Rn) = 0.45 and
Peff

des(Pb) = 0.55.The other model parameters are:LPb =
0.6 mm, LRn = 0.3 mm, LBi = 0.06 mm, Pleak(Pb) = 0.5,
𝛼Bi = 0. For presentation purpose, the calculated dose
map is duplicated and mirrored around the seed axis
so a symmetrical map can be shown. Consequently,
negative values of r in Figure 4a refer to the mirrored
values. Note that the radial dependence of the dose
is nearly unchanged up to ∼ 1.5 mm from the seed
end. Figure 4b shows the dose profiles as a function
of r in the seed midplane (z=0) and along z paral-
lel to the seed axis (r = Δr∕2, the ring closest to r=0),
both set such that ‘0’ is the seed edge. The dose along
the seed axis is smaller by ∼ 30% near the seed edge,
with the difference increasing to a factor of ∼ 3 at
3 mm, compared to that in the midplane—an impor-
tant point to consider in treatment planning. Although
a similar effect is observed when approximating the
seed to a finite line source comprised of point-like seg-
ments, this approach leads to significant errors in the
dose because it does not consider the finite diameter
of the seed, which “pushes” the radial dose to larger
values.

Figure 5 compares the results of the full 2D calcu-
lation with those obtained using three approximations:
(1) an infinite cylinder with a full time-dependent cal-
culation (using DART1D); (2) an infinite cylinder with a
uniform 0D time dependence, Equations (26) and (27);
and (3) a finite line source comprised of point-like seg-
ments and using the 0D approximation.26 Panels (a) and
(b) show the relative error of each approach compared
to the exact 2D solution as a function of the radial dis-
tance from the source axis in its midplane. On the left
we display the relative errors for a low-diffusion “radon-
dominated” case, with LRn = 0.3 mm and LPb = 0.1 mm,
and on the right—for a high-diffusion “lead-dominated”
case, with LRn = 0.3 mm, LPb = 0.6 mm. In both cases
and Pleak(Pb) = 0.5, LBi = 0.1LPb and 𝛼Bi = 0. Radial
distances up to 3 mm are considered because larger
values are not relevant for realistic seed lattices, as dis-
cussed in Part II of this publication. Approximating the
seed as a finite line source leads to underestimating
the dose by ∼ 45% at all distances for the low-diffusion
scenario, while for the high-diffusion case underestima-
tion starts at ∼ 40% at short distances and gradually
decreases with distance (where the 0D assumption
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8 SINGLE-SEED CALCULATIONS IN 1D AND 2D

F IGURE 4 (a) Total alpha dose accumulated over 30 days of treatment by a DaRT seed with initial activity of 3𝜇Ci 224Ra. The seed radius
and length are 0.35 and 10 mm, respectively. The other model parameters are given in the text. Negative values of r indicate a mirrored dose
map. The white space at the center represents the seed, where the number densities, and hence the dose, are zero. (b) Total alpha dose as a
function of the distance from the seed edge along r in the midplane and along z on the seed axis.

F IGURE 5 (a) and (b) Relative error in calculating the dose at the seed midplane using three approximations in comparison with the exact
2D solution (DART2D): (1) a full time-dependent solution for an infinite cylinder using DART1D; (2) closed-form solution for an infinite cylindrical
source with 0D time dependence; (3) a finite line source, divided into point-like segments, with 0D time dependence. (a) Low-diffusion,
radon-dominated case; (b) High-diffusion, lead-dominated case. (c) and (d) Relative error between DART1D and the dose at varying planes, as
calculated by DART2D for the same choice of diffusion lengths.
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SINGLE-SEED CALCULATIONS IN 1D AND 2D 9

F IGURE 6 (a) Total alpha particle dose calculated using DART2D and a 2D calculation in COMSOL MultiphysicsTM for the high-diffusion
“lead-dominated” case. (b) Relative error between the COMSOL MultiphysicsTM and the DART2D calculated profiles shown in (A). The relative
error is defined as err = (COMSOL − DART2D)∕DART2D.

compensates in the opposite direction).The closed-form
infinite cylinder 0D expression is accurate to∼ 0.7% at all
distances for the low-diffusion case, but overestimates
the dose at large distances for the high-diffusion lead-
dominated case. The reason for the increased error at
large distances is that the assumption of a uniform 0D
time dependence does not take into account the radial
variation of the delayed buildup of 212Pb. This effect is
seen only for the lead-dominated case,because at large
distances from the source the main contribution to the
dose comes from the 212Bi/212Po pair.Note,however,that
even in this case, the relative error is below 7% up to
r ∼ 2.5 mm. The DART1D solution, with the correct time
dependence, is accurate to within ∼ 0.1% − 0.2% in both
scenarios. Panels (c) and (d) show the relative error in
the radial dose calculated using DART1D, when com-
pared to the correct DART2D dose at varying distances
along z from the seed midplane (z = 0), for the low- and
high-diffusion cases. DART1D is accurate within < 5%
up to z ∼ 3 mm for r ≲ 2.5 mm in the high-diffusion
lead-dominated case, with even better accuracy for the
low-diffusion scenario.

As a final note, a comparison was done between
the solutions obtained using DART2D and a 2D cal-
culation done using COMSOL MultiphysicsTM, where
the latter employed a 2D triangular mesh of varying
element size and a backward differentiation formula
for the adaptive time step. The goal was to check
whether truncation errors resulting from the adopted 2D
numerical scheme (in both space and time) have a sig-
nificant effect on the solutions obtained using DART2D.
The results are shown in Figure 6. The comparison
shown here is for the high-diffusion “lead-dominated”
case. It indicates that, although DART2D is not nec-
essarily an optimal numerical scheme, it does lead to

∼ 1% accuracy in the therapeutically relevant region
of ∼2 mm.

5 DISCUSSION

This work is the first part of a two-part publication
on DaRT alpha dose modeling, covering single-seed
dose calculations and studies of DaRT seed lattices,
based on the diffusion-leakage model as a pragmatic—
although clearly simplistic—framework for quantitative
treatment planning in DaRT.

In this first part, we provided closed-form approx-
imations and numerical finite-element schemes for
calculating the alpha particle dose of DaRT seeds
of finite diameter and length, extending the discus-
sion of a previous publication26 that modeled seeds
as idealized line sources comprised of a collection
of point-like segments. We began with the asymptotic
solution of the DL model equations for infinite cylin-
drical sources, in analogy with the point-source case.
We then employed a zero-dimensional temporal approx-
imation to describe the initial buildup phase of both
220Rn and 212Pb, assuming that the time profile is inde-
pendent of the radial distance from the source. For
a complete time-dependent solution for infinite cylin-
drical sources, which properly accounts for the radial
dependence of the buildup phase, we developed and
described a simple one-dimensional numerical scheme
(“DART1D”), and validated it against the asymptotic
solutions. The extension to cylindrical sources of a
finite length was done using a two-dimensional scheme
(“DART2D”). We showed that the full 1D solution coin-
cides to high accuracy with the 2D calculation in the
seed midplane, and can therefore be used to validate it;
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10 SINGLE-SEED CALCULATIONS IN 1D AND 2D

in fact, the 1D solution remains accurate to percent-level
up to ∼ 2 mm from the seed end. DART2D was fur-
ther validated against a solution obtained with COMSOL
MultiphysicsTM, showing that in spite of its simplic-
ity it is accurate to ∼ 1% at therapeutically relevant
radial distances from the seed. A comparison between
DART2D and the previous finite line-source approxima-
tion,showed that the latter considerably underestimates
the accurate solution. We therefore recommend using
the full 2D solution for a finite cylinder as the basis for
preparing dose lookup tables for DaRT treatment plan-
ning, similarly to the TG-43 format used in conventional
brachytherapy.35

When discussing the numerical scheme of the 1D and
2D solutions, our aim was to outline their key features
rather than develop computer codes with optimized
performance. The most demanding aspect of the cal-
culation is the inversion of the coefficient matrix, which
can be optimized and coded more efficiently than pre-
sented here.For example,when implemented in Fortran,
DART1D completes in ∼6 s a calculation that requires
∼ 3 m to complete in MATLAB.

It is important to emphasize that while the diffusion-
leakage model provides a pragmatic description of the
DaRT alpha dose, it is by no means a complete theory.
In particular, it does not take into account the possibility
of convective effects and nonuniformity in real tumors,
which comprise both necrotic and viable regions, with
the former evolving as a result of the DaRT treatment
itself. However, despite its limitations, the model can
provide a quantitative guide for selecting a starting
point for treatment planning in clinical trials in terms
of seed activity and spacing. This was demonstrated
in the first clinical trial,23 where 2 𝜇Ci seeds were
inserted at ∼ 5 mm spacing, based on the DL model
prediction that this would provide a nominal alpha dose
of > 10 Gy throughout the treated volume, and where
∼ 80% of the treated tumors displayed a complete
response.

6 CONCLUSION

This work brings a detailed assessment of the DL
model equations and their solutions for cylindrical DaRT
sources in one and two dimensions. A full numerical
calculation for a DaRT seed in two dimensions is com-
pared to a one-dimensional scheme and approximate
analytical solution for an infinite cylinder.For actual treat-
ment plans, the full two-dimensional solution should be
used to generate dose lookup tables, similarly to the
TG-43 format employed in conventional brachytherapy.
Given the accuracy of the one-dimensional solution up
to ∼ 2 mm from the seed edge it can be used for efficient
parametric studies of DaRT seed lattices.
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APPENDI X A: DERI VAT I ON OF THE
ASYMPTOTI C SOLUTI ONS FOR I NF IN ITE
CYL INDRICAL AND LINE SOURCES
In this appendix we provide a detailed derivation of
the asymptotic solutions of the diffusion-leakage model
equations for the number densities of 220Rn, 212Pb
and 212Bi, for an infinite cylindrical source and infinite
line source.

A.1 220Rn
The 220Rn diffusion equation for the case of an infinite
cylindrical source of radius R0 in a homogeneous and
isotropic medium, in cylindrical coordinates, is:

𝜕nRn

𝜕t
=

DRn

r
𝜕

𝜕r

(
r
𝜕nRn

𝜕r

)
+ sRn − 𝜆RnnRn (A1)

Assuming no 224Ra release from the source sRn(r, t) =
0, and 220Rn enters the tumor by direct release from the
source surface, with the following boundary condition at
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12 SINGLE-SEED CALCULATIONS IN 1D AND 2D

r → R0:

lim
r→R0

2𝜋rjRn(r, t) = Pdes(Rn)
Γsrc

Ra(0)

l
e−𝜆Rat (A2)

where Γsrc
Ra(0)∕l is the initial 224Ra activity per unit

length of the source, and jRn = −DRn
𝜕nRn

𝜕r
. Substituting

the asymptotic form nasy
Rn (r, t) = ñRn(r)e−𝜆Rat in Equa-

tion (A1) leads to:

d2ñRn

dr2
+

1
r

dñRn

dr
−

1

L2
Rn

ñRn = 0 (A3)

where LRn is defined in Equation (9). Defining 𝜉 = r∕LRn
gives:

𝜉2 d2ñRn

d𝜉2
+ 𝜉

dñRn

d𝜉
−
(
𝜉2 + n2

)
ñRn = 0 (A4)

with n = 0. This has the form of a modified Bessel
equation,36 for which the solution is:

ñRn(𝜉) = ARnK0(𝜉) + BRnI0(𝜉) (A5)

I0(𝜉) is a modified Bessel function of the first kind.
Since it diverges for 𝜉 → ∞, it must hold that BRn = 0.
K0(𝜉) is a modified Bessel function of the second kind,
for which:

K0(𝜉) = ∫
∞

0

cos (𝜉t)√
t2 + 1

dt (A6)

It vanishes in the limit 𝜉 → ∞ and hence:

ñRn(𝜉) = ARnK0(𝜉) (A7)

The modified Bessel functions of the second kind have
the property that:

𝜉
dKn

d𝜉
= nKn(𝜉) − 𝜉Kn+1(𝜉) (A8)

Thus:
dK0

d𝜉
= −K1(𝜉) (A9)

Using this, the current can be expressed as:

jRn(r, t) =
DRn

LRn
ARnK1

(
r

LRn

)
e−𝜆Rat (A10)

Substituting (A10) into the boundary condition (A2)
yields:

ARn =
Pdes(Rn)

(
Γsrc

Ra(0)∕l
)

2𝜋DRn (R0∕LRn)K1(R0∕LRn)
(A11)

Finally:

nasy
Rn (r, t) =

Pdes(Rn)
(
Γsrc

Ra(0)∕l
)

2𝜋DRn (R0∕LRn)K1(R0∕LRn)
K0

(
r

LRn

)
e−𝜆Rat

(A12)

For 𝜉 → 0:36

lim
𝜉→0

𝜉K1(𝜉) = 1 (A13)

Therefore, for the case of an ideal line source
(R0∕LRn → 0):

nasy
Rn (r, t) =

Pdes(Rn)
(
Γsrc

Ra(0)∕l
)

2𝜋DRn
K0

(
r

LRn

)
e−𝜆Rat (A14)

A.2 212Pb
The diffusion-leakage equation for 212Pb for the infinite
cylindrical source geometry is:

𝜕nPb

𝜕t
=

DPb

r
𝜕

𝜕r

(
r
𝜕nPb

𝜕r

)
− 𝜆PbnPb − 𝛼PbnPb + 𝜆RnnRn

(A15)

with the boundary condition:

lim
r→R0

2𝜋rjPb(r, t) =
(

Peff
des(Pb) − Pdes(Rn)

)Γsrc
Ra(0)

l
e−𝜆Rat

(A16)

where jPb = −DPb
𝜕nPb

𝜕r
. As before, the solution is

assumed to take the form:

nasy
Pb (r, t) = ñPb(r)e−𝜆Rat (A17)

Substituting the asymptotic forms for 212Pb and 220Rn
in Equation (A15) yields:

(𝜆Pb + 𝛼Pb − 𝜆Ra)ñPb = DPb

(
d2ñPb

dr2
+

1
r

dñPb

dr

)

+ 𝜆RnARnK0

(
r

LRn

)
(A18)
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SINGLE-SEED CALCULATIONS IN 1D AND 2D 13

where ARn is given in (A11). Using the definition of LPb
(10), this can be written as:(

d2ñPb

dr2
+

1
r

dñPb

dr

)
−

1

L2
Pb

ñPb +
𝜆Rn

DPb
ARnK0

(
r

LRn

)
= 0

(A19)

We attempt a solution of the form:

ñPb(r) = APbK0

(
r

LRn

)
+ BPbK0

(
r

LPb

)
(A20)

In order to proceed, some properties of the mod-
ified Bessel functions need to be utilised. Again, we
define 𝜉 = r∕L. Using the recursion relation (A8), we
have:

dK0

d𝜉
= −K1(𝜉) (A21)

dK1

d𝜉
=

1
𝜉

K1(𝜉) − K2(𝜉) (A22)

Another property of the modified Bessel functions36 is:

Kn+1(𝜉) = Kn−1(𝜉) +
2n
𝜉

Kn(𝜉) (A23)

Thus:

K2(𝜉) = K0(𝜉) +
2
𝜉

K1(𝜉) (A24)

Substituting K2(𝜉) from (A24) in (A22) gives:

dK1

d𝜉
= −

(
K0(𝜉) +

1
𝜉

K1(𝜉)
)

(A25)

From (A21):

d
dr

K0

( r
L

)
=

1
L

d
d𝜉

K0(𝜉) = −
1
L

K1

( r
L

)
(A26)

and from (A25):

d
dr

K1

( r
L

)
=

1
L

d
d𝜉

K1(𝜉) = −
1
L

(
K0

( r
L

)
+

L
r

K1

( r
L

))
(A27)

Using results (A26) and (A27), we get:

dñPb

dr
= −

APb

LRn
K1

(
r

LRn

)
−

BPb

LPb
K1

(
r

LPb

)
(A28)

and:

d2ñPb

dr2
=

APb

L2
Rn

(
K0

(
r

LRn

)
+

LRn

r
K1

(
r

LRn

))

+
BPb

L2
Pb

(
K0

(
r

LPb

)
+

LPb

r
K1

(
r

LPb

))
(A29)

resulting in:

d2ñPb

dr2
+

1
r

dñPb

dr
=

APb

L2
Rn

K0

(
r

LRn

)
+

BPb

L2
Pb

K0

(
r

LPb

)
(A30)

When (A30) is inserted in Equation (A19), the K0(r∕LPb)
terms cancel out, leaving:

APb =
L2

RnL2
Pb

L2
Rn − L2

Pb

𝜆Rn

DPb
ARn

=
L2

RnL2
Pb

L2
Rn − L2

Pb

𝜆Rn

DPb

Pdes(Rn)
(
Γsrc

Ra(0)∕l
)

2𝜋DRn (R0∕LRn)K1(R0∕LRn)

(A31)

The coefficient BPb is found from the boundary condi-
tion (A16). Defining j̃Pb(r) = −DPb

dñPb

dr
and using (A28),

we have:

2𝜋R0̃jPb(R0) = 2𝜋R0DPb

(
APb

LRn
K1

(
R0

LRn

)
+

BPb

LPb
K1

(
R0

LPb

))

=
(
Peff

des(Pb) − Pdes(Rn)
)Γsrc

Ra (0)

l
(A32)

yielding:

BPb =

(
Peff

des(Pb) − Pdes(Rn)
)(
Γsrc

Ra(0)∕l
)

2𝜋DPb (R0∕LPb)K1(R0∕LPb)

−APb
(R0∕LRn)K1(R0∕LRn)
(R0∕LPb)K1(R0∕LPb)

(A33)

For an ideal line source, (R0∕L)K1(R0∕L) → 1 giving:

Aline
Pb =

L2
RnL2

Pb

L2
Rn − L2

Pb

𝜆Rn

DPb

Pdes(Rn)
(
Γsrc

Ra(0)∕l
)

2𝜋DRn
(A34)
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14 SINGLE-SEED CALCULATIONS IN 1D AND 2D

Bline
Pb =

(
Peff

des(Pb) − Pdes(Rn)
)(
Γsrc

Ra(0)∕l
)

2𝜋DPb
− APb

(A35)

Finally, we have:

nasy
Pb (r, t) =

(
APbK0

(
r

LRn

)
+ BPbK0

(
r

LPb

))
e−𝜆Rat

(A36)

A.3 212Bi
The diffusion-leakage equation for 212Bi for an infinite
cylindrical source is:

𝜕nBi

𝜕t
=

DBi

r
𝜕

𝜕r

(
r
𝜕nBi

𝜕r

)
− 𝜆BinBi − 𝛼BinBi + 𝜆PbnPb

(A37)
Since 212Bi atoms are not emitted directly from the
source, the boundary condition is:

lim
r→R0

2𝜋rjBi(r, t) = 0 (A38)

We look for an asymptotic solution of the form:
nasy

Bi (r, t) = ñBi(r)e−𝜆Rat, attempting:

ñBi(r) = ABiK0

(
r

LRn

)
+ BBiK0

(
r

LPb

)
+ CBiK0

(
r

LBi

)
(A39)

Substituting the asymptotic form (A39) in Equa-
tion (A37) and in the boundary condition (A38), using
the asymptotic form of the 212Pb solution (A36) and the
expression for the effective 212Bi diffusion length (11),
gives:

nasy
Bi (r, t) =

(
ABiK0

(
r

LRn

)
+ BBiK0

(
r

LPb

)
+ CBiK0

(
r

LBi

))
e−𝜆Rat (A40)

For a cylindrical source of radius R0:

ABi =
L2

RnL2
Bi

L2
Rn − L2

Bi

𝜆Pb

DBi
APb (A41)

BBi =
L2

PbL2
Bi

L2
Pb − L2

Bi

𝜆Pb

DBi
BPb (A42)

CBi = −
(R0∕LRn)K1(R0∕LRn)ABi + (R0∕LPb)K1(R0∕LPb)BBi

(R0∕LBi)K1(R0∕LBi)

(A43)

where APb and BPb are given in (A31) and (A33). For an
infinite line source,APb and BPb are replaced by their line
source forms (A34) and (A35) and:

Cline
Bi = −(ABi + BBi) (A44)

APPENDIX B: DART1D: NUMERICAL
SCHEME
In this section we provide a detailed description of the
one-dimensional numerical scheme (“DART1D”) used
to solve the DL model equation for an infinitely long
cylindrical source.

As noted in Section 4.1, the domain is divided into
concentric cylindrical shells, enumerated i = 1…Nr , of
equal radial width Δr . The radius of the source is R0;Δr
is chosen such that R0∕Δr is an integer number, and Δr
is considerably smaller than LRn and LPb. The central
radius of the i-th shell is:

ri = R0 + (i −
1
2

)Δr (B1)

The average number densities in the i-th shell are
nRn,i ,nPb,i and nBi,i .The time steps are enumerated by p.
For shells away from the source surface,with 1 < i ≤ Nr ,
the diffusive term appearing in Equation A1, A15 and
A37 is discretized as follows:

Dx

r
𝜕

𝜕r

(
r
𝜕nx

𝜕r

)
ri

⟹
Dx

ri

(
r 𝜕nx

𝜕r

)
ri+Δr∕2

−
(

r 𝜕nx

𝜕r

)
ri−Δr∕2

Δr

⟹
Dx

ri

(ri +
Δr

2
) nx,i+1−nx,i

Δr
− (ri −

Δr

2
) nx,i−nx,i−1

Δr

Δr

=
Dx

Δr2

((
1 +

Δr
2ri

)
nx,i+1 +

(
1 −

Δr
2ri

)
nx,i−1 − 2nx,i

)
(B2)

where x stands for Rn, Pb and Bi. The relative trunca-
tion error introduced by this discretization scheme in the
diffusive term can be estimated from the closed-form
expressions for the asymptotic number densities of the
diffusing atoms. For example, for 220Rn (Equation A14)
it is of the order of (Δr∕LRn)2.

Using Equation B2, for shells with 1 < i ≤ Nr , the DL
model equations take the discrete implicit form:

n(p+1)
x,i − n(p)

x,i

Δt

= Dx

⎛⎜⎜⎝
n(p+1)

x,i+1 + n(p+1)
x,i−1 − 2n(p+1)

x,i

Δr2
+

1
ri

n(p+1)
x,i+1 − n(p+1)

x,i−1

2Δr

⎞⎟⎟⎠
− (𝜆x + 𝛼x)n(p+1)

x,i + s(p+1)
x,i (B3)
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SINGLE-SEED CALCULATIONS IN 1D AND 2D 15

with 𝛼Rn = 0. Outside our domain the number densities
are set to zero, such that in Equation (B3) for i = Nr
nx,i+1 = 0.

In the special case i = 1, i.e., the shell immediately
outside the source surface with r1 = R0 + Δr∕2, we use
the boundary conditions at r → R0 . Since the current
density is jx = −Dx

𝜕nx

𝜕r
, one can write:

Dx

r
𝜕

𝜕r

(
r
𝜕nx

𝜕r

)
r1

⟹
Dx

R0 + Δr∕2

(R0 + Δr)
(
𝜕nx

𝜕r

)
R0+Δr

− R0

(
𝜕nx

𝜕r

)
R0

Δr

⟹
Dx

R0 + Δr∕2

(R0 + Δr)
nx,2−nx,1

Δr
+ R0

jx(R0,t)

Dx

Δr
(B4)

The source boundary conditions Equation (4)-(6) give:

R0jRn(R0, t) =
1

2𝜋
Pdes(Rn)

Γsrc
Ra(0)

l
e−𝜆Rat (B5)

R0jPb(R0, t) =
1

2𝜋

(
Peff

des(Pb) − Pdes(Rn))
)Γsrc

Ra(0)

l
e−𝜆Rat

(B6)

R0jBi(R0, t) = 0 (B7)

Therefore:

DRn

r
𝜕

𝜕r

(
r
𝜕nRn

𝜕r

)
r1

⟹
DRn

Δr2

(
1 + Δr∕R0

1 + Δr∕2R0

)(
nRn,2 − nRn,1

)

+
Pdes(Rn)

(
Γsrc

Ra(0)∕l
)

e−𝜆Rat

2𝜋R0Δr(1 + Δr∕2R0)
(B8)

DPb

r
𝜕

𝜕r

(
r
𝜕nPb

𝜕r

)
r1

⟹
DPb

Δr2

(
1 + Δr∕R0

1 + Δr∕2R0

)(
nPb,2 − nPb,1

)
+

(
Peff

des(Pb) − Pdes(Rn)
)(
Γsrc

Ra(0)∕l
)
e−𝜆Rat

2𝜋R0Δr(1 + Δr∕2R0)
(B9)

and

DBi

r
𝜕

𝜕r

(
r
𝜕nBi

𝜕r

)
r1

⟹
DBi

Δr2

(
1 + Δr∕R0

1 + Δr∕2R0

)(
nBi,2 − nBi,1

)
(B10)

With these expressions for the diffusive term, for the
i = 1 shell Equation B3 becomes:

n(p+1)
x,1 − n(p)

x,1

Δt
=

Dx

Δr2

(
1 + Δr∕R0

1 + Δr∕2R0

)(
n(p+1)

x,2 − n(p+1)
x,1

)
− (𝜆x + 𝛼x)n(p+1)

x,1 + s(p+1)
x,1 (B11)

The source terms sp+1
x,i appearing in Equation (B3)

and (B10) are:

sp+1
Rn,i =

Pdes(Rn)
(
Γsrc

Ra(0)∕l
)

e−𝜆Ratp+1

2𝜋R0Δr(1 + Δr∕2R0)
𝛿i,1 (B12)

sp+1
Pb,i =

(
Peff

des(Pb) − Pdes(Rn)
)(
Γsrc

Ra (0)∕l
)
e−𝜆Ratp+1

2𝜋R0Δr(1 + Δr∕2R0)
𝛿i,1 + 𝜆Rnnp+1

Rn,i

(B13)

sp+1
Bi,i = 𝜆Pbnp+1

Pb,i (B14)

where 𝛿i,1 = 1 for i = 1 and zero otherwise. Rearrang-
ing Equation (B3) and (B10), we obtain the general
form:

n(p)
x,i + s(p+1)

x,i Δt = A(x)
i,i−1n(p+1)

x,i−1 + A(x)
i,i n(p+1)

x,i + A(x)
i,i+1n(p+1)

x,i+1

(B15)

The matrix coefficients introduced in Equation (B14)
depend on the value of i, reflecting the boundary con-
ditions for i = 1 and i = Nr . Retaining terms up to
first order in Δr∕ri the different cases are summarized
below:

A(x)
i,i−1 = −

DxΔt
Δr2

(
1 −

Δr
2ri

)
1 < i ≤ Nr

A(x)
i,i = 1 +

DxΔt
Δr2

(
1 +

Δr
2ri

)
+ (𝜆x + 𝛼x)Δt i = 1

= 1 +
2DxΔt
Δr2

+ (𝜆x + 𝛼x)Δt 1 < i ≤ Nr

A(x)
i,i+1 = −

DxΔt
Δr2

(
1 +

Δr
2ri

)
1 ≤ i < Nr

(B16)
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16 SINGLE-SEED CALCULATIONS IN 1D AND 2D

with ri given in Equation (B1). Writing Equation (B14) in
matrix form:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n(p)
x,1

n(p)
x,2

⋮

n(p)
x,i

⋮

n(p)
x,Nr−1

n(p)
x,Nr

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s(p+1)
x,1

s(p+1)
x,2

⋮

s(p+1)
x,i

⋮

s(p+1)
x,Nr−1

s(p+1)
x,Nr

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Δtp+1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A(x)
1,1 A(x)

1,2 0 ⋯ ⋯ 0

A(x)
2,1 A(x)

2,2 A(x)
2,3 0 ⋯ ⋯ 0

⋮ ⋱ ⋱ ⋱ ⋮

0 ⋯ 0 A(x)
i,i−1 A(x)

i,i A(x)
i,i+1 0 ⋯ 0

⋮ ⋱ ⋱ ⋱ ⋮

0 ⋯ ⋯ 0 A(x)
Nr−1,Nr−2 A(x)

Nr−1,Nr−1 A(x)
Nr−1,Nr

0 ⋯ ⋯ 0 A(x)
Nr ,Nr−1 A(x)

Nr ,Nr

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n(p+1)
x,1

n(p+1)
x,2

⋮

n(p+1)
x,i

⋮

n(p+1)
x,Nr−1

n(p+1)
x,Nr

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(B17)

which can be written as n(p)
x + s(p+1)

x Δt = Axn(p+1)
x . Mul-

tiplying on the left by the inverse of Ax gives:

n(p+1)
x = A−1

x (n(p)
x + s(p+1)

x Δt), (B18)

which completes the solution for the p + 1 step. Note
that although the source terms are calculated for the
p + 1 step they are, in fact,known when the matrix equa-
tions are solved.The reason is that in the p + 1 step one
first solves for 220Rn, then for 212Pb and lastly for 212Bi.
The source term for 220Rn depends only on time, those
of 212Pb are found using the p + 1 solution for 220Rn,
and those of 212Bi – using the p + 1 solution for 212Pb.
Another point to consider is that since Δt is changed
consecutively in the calculation and the matrix coeffi-
cients depend on Δt, they must be updated accordingly
in each step.

The alpha dose components are also updated in each
step:

Dose(p+1)
𝛼 (RnPo; i) = Dose(p)

𝛼 (RnPo; i) +
E𝛼(RnPo)

𝜌
𝜆Rnn(p+1)

Rn,i Δt

(B19)

Dose(p+1)
𝛼 (BiPo; i) = Dose(p)

𝛼 (BiPo; i) +
E𝛼(BiPo)

𝜌
𝜆Bin

(p+1)
Bi,i Δt

(B20)

At the end of the p + 1 step, Δt is updated
based on the relative change in the solution. This
can be done in a number of ways. A particular
choice, implemented here, was to consider the rela-
tive change in the total dose (sum of the RnPo and
BiPo contributions) at a particular point of interest ri0

(e.g., at 2 mm):

Δtnew = Δt ⋅
𝜖tol(

Dose(p+1)
𝛼 (tot; i0) − Dose(p)

𝛼 (tot; i0)
)
∕Dose(p)

𝛼 (tot; i0)

(B21)

where 𝜖tol is a preset tolerance parameter. For prac-
ticality, one can further set upper and lower limits on
Δt to balance between calculation time and accuracy.
Although the initial time step should be small compared
to 220Rn half -life, its particular value has little effect on
the accuracy of the calculated asymptotic dose.

APPENDIX C: DART2D: NUMERICAL
SCHEME
In this section we provide a detailed description of
the two-dimensional axisymmetric numerical scheme
(“DART2D”) used to solve the DL model equation for a
cylindrical source of radius R0 and length l.

The source lies along the z-axis with z = 0 at its mid-
plane. The DL equations are solved over a cylindrical
domain extending from r = 0 to r = Rmax and from z =
−Zmax to z = +Zmax. Both Rmax and Zmax − l∕2 should
be much larger than the largest diffusion length of the
problem. The domain comprises ring elements of equal
radial width Δr and equal z-width Δz.Δr and Δz are cho-
sen such that R0∕Δr and l∕(2Δz) are integer numbers,
with Δr and Δz much smaller than LRn and LPb.The rings
are enumerated by i, j, where i = 1…Nr and j = 1…Nz.
Elements with i = 1 are on-axis,while j = 1 at the bottom
of the cylindrical domain, and j = Nz at the top. Unlike
the 1D case, where the source is infinitely long and one
only considers points with r > R0, for a finite seed in 2D
one must also solve the equations for points above and
below the seed, with r < R0 and |z| > 1

2
l. As for the 1D

case, the radius and z-coordinate of the i, j ring, ri , zj , are
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SINGLE-SEED CALCULATIONS IN 1D AND 2D 17

defined at the center of its rz cross-section.For the inner-
most i = 1 rings r1 =

1

2
Δr . Points inside the seed, i.e., in

rings with ri ≤ R0 − Δr∕2, and |zj| ≤ 1

2
l − 1

2
Δz, have zero

number densities of 220Rn, 212Pb and 212Bi.
Discretization of Equation (1-3) in 2D yields, for inte-

rior ring elements in the cylindrical domain (outside of
the seed and not touching its wall or bases, and with
i > 1):

n(p+1)
x,i,j − n(p)

x,i,j

Δt
=

Dx

⎛⎜⎜⎝
n(p+1)

x,i+1,j + n(p+1)
x,i−1,j − 2n(p+1)

x,i,j

Δr2
+

1
ri

n(p+1)
x,i+1,j − n(p+1)

x,i−1,j

2Δr
+

n(p+1)
x,i,j+1 + n(p+1)

x,i,j−1 − 2n(p+1)
x,i,j

Δz2

⎞⎟⎟⎠
− (𝜆x + 𝛼x)n(p+1)

x,i,j + s(p+1)
x,i,j (C1)

Equation (C1) holds also for ring elements on the
external surfaces of the domain, with i = Nr , j = 1 or
j = Nz, as the number densities for rings with i = Nr + 1,
j = 0 or j = Nz + 1 are all zero. For ring elements on-
axis (i = 1), above or below the seed, the condition is
(𝜕nx∕𝜕r)r=0 = 0. Since the 224Ra activity is confined to
the seed wall, the z-component of the current density
is set to zero on the seed bases, i.e., (𝜕nx𝜕z)z=±l∕2 = 0.
Defining is as the radial index of ring elements touch-
ing the seed wall (i.e., ris = R0 + Δr∕2), for ring elements
with |zj| ≤ l∕2 − Δz∕2, Equation (C1) becomes, similarly
to the 1D case:

n(p+1)
x,is,j − n(p)

x,is,j

Δt
=

Dx

Δr2

(
1 + Δr∕R0

1 + Δr∕2R0

)(
n(p+1)

x,is+1,j − n(p+1)
x,is,j

)
+

Dx

Δz2

(
n(p+1)

x,is,j+1 + n(p+1)
x,is,j−1 − 2n(p+1)

x,is,j

)
− (𝜆x + 𝛼x)n(p+1)

x,is,j + s(p+1)
x,is,j (C2)

The source terms in Equation (C1) and (C2) are similar
to the 1D case,with the additional requirement that |zj| <
l∕2:

sp+1
Rn,i,j =

Pdes(Rn)
(
Γsrc

Ra (0)∕l
)
e−𝜆Ratp+1

2𝜋R0Δr(1 + Δr∕2R0)
𝛿i,is ⋅

(1 − sign(|zj| − l∕2)

2

)
(C3)

sp+1
Pb,i,j =

(
Peff

des(Pb) − Pdes(Rn)
)(
Γsrc

Ra(0)∕l
)

e−𝜆Ratp+1

2𝜋R0Δr(1 + Δr∕2R0)
𝛿i,is

⋅

(1 − sign(|zj| − l∕2)

2

)
+ 𝜆Rnnp+1

Rn,i,j (C4)

sp+1
Bi,i,j = 𝜆Pbnp+1

Pb,i,j (C5)

In order to solve Equation (C1) in matrix form we use
linear indexing .The 2D elements n(p)

x,i,j and s(p)
x,i,j are rear-

ranged in two column vectors ñ(p)
x and s̃(p)

x in sequential
order. We define:

k(i, j) = (j − 1)Nr + i (C6)

ñ(p)
x,k = n(p)

x,i,j (C7)

s̃(p)
x,k = s(p)

x,i,j (C8)

with k = 1…NrNz. Noting that n(p)
x,i±1,j = ñ(p)

x,k±1 and

n(p)
x,i,j±1 = ñ(p)

x,k±Nr
, Equation (C1) can be rearranged as:

ñ(p)
x,k + s̃(p+1)

x,k Δt = M(x)
k,k−Nr

ñ(p+1)
x,k−Nr

+ M(x)
k,k−1ñ(p+1)

x,k−1

+ M(x)
k,kñ(p+1)

x,k + M(x)
k,k+1ñ(p+1)

x,k+1 + M(x)
k,k+Nr

ñ(p+1)
x,k+Nr

(C9)

As for the 1D case, the matrix elements appearing in
Equation (C9) depend on the values of i, j (and therefore
k), in a manner that satisfies the boundary conditions.
For compactness, we define the following intermediate
quantities:

K(x)
z =

DxΔt
Δz2

(C10)

K(x)
r =

DxΔt
Δr2

(C11)

K(x+)
r =

DxΔt
Δr2

(
1 +

Δr
2ri

)
(C12)

K(x−)
r =

DxΔt
Δr2

(
1 −

Δr
2ri

)
(C13)

S(x)
1 = 1 + 2K(x)

r + K(x)
z + (𝜆x + 𝛼x)Δt (C14)

S(x)
2 = 1 + 2K(x)

r + 2K(x)
z + (𝜆x + 𝛼x)Δt (C15)

S(x)
+ = 1 + K(x+)

r + 2K(x)
z + (𝜆x + 𝛼x)Δt (C16)

Table 1 lists the expressions for the matrix elements M(x)
k,l

for all possible cases for ri and zj . With these, one can
write Equation (C9) in matrix form (with K ≡ NrNz):
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18 SINGLE-SEED CALCULATIONS IN 1D AND 2D

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ñ(p)
x,1

ñ(p)
x,2

ñ(p)
x,3

⋮

ñ(p)
x,Nr+1

ñ(p)
x,Nr+2

⋮

ñ(p)
x,K−1

ñ(p)
x,K

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s̃(p+1)
x,1

s̃(p+1)
x,2

s̃(p+1)
x,3

⋮

s̃(p+1)
x,Nr+1

s̃(p+1)
x,Nr+2

⋮

s̃(p+1)
x,K−1

s̃(p+1)
x,K

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Δt =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M(x)
1,1 M(x)

1,2 0 ⋯ M(x)
1,1+Nr

⋯ 0

M(x)
2,1 M(x)

2,2 M(x)
2,3 0 ⋯ M(x)

2,2+Nr
⋯ 0

0 M(x)
3,2 M(x)

3,3 M(x)
3,4 0 ⋯ M(x)

3,3+Nr
⋯ 0

⋮ ⋱ ⋱ ⋱ ⋱ ⋮

M(x)
Nr+1,1 0 ⋯ M(x)

Nr+1,Nr
M(x)

Nr+1,Nr+1 M(x)
Nr+1,Nr+2 0 ⋯ 0

0 M(x)
Nr+2,2 0 ⋯ M(x)

Nr+2,Nr+1 M(x)
Nr+2,Nr+2 M(x)

Nr+2,Nr+3 ⋯ 0

⋮ ⋱ ⋱ ⋱ ⋱

0 ⋯ 0 M(x)
K−1,K−1−Nr

0 ⋯ M(x)
K−1,K−2 M(x)

K−1,K−1 M(x)
K−1,K

0 ⋯ 0 M(x)
K,K−Nr

0 ⋯ M(x)
K,K−1 M(x)

K,K

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ñ(p+1)
x,1

ñ(p+1)
x,2

ñ(p+1)
x,3

⋮

ñ(p+1)
x,Nr+1

ñ(p+1)
x,Nr+2

⋮

ñ(p+1)
x,K−1

ñ(p+1)
x,K

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(C17)

or, equivalently: ñ(p)
x + s̃(p+1)

x Δt = Mxñ(p+1)
x . As for the

1D case, multiplying on the left by the inverse of
Mx, gives: ñ(p+1)

x = M−1
x (ñ(p)

x + s̃(p+1)
x Δt). The values

of n(p+1)
x,i,j = ñ(p+1)

x,k are then updated for all possible

TABLE 1 Matrix elements in 2D.

Case M(x)
k, k−Nr

M(x)
k, k−1

M(x)
k, k

M(x)
k, k+1

M(x)
k, k+Nr

R0 +
Δr

2
< ri < Rmax −

Δr

2

& |zj | < Zmax −
Δz

2

−K (x)
z −K (x−)

r S(x)
2 −K (x+)

r −K (x)
z

Δr

2
< ri ≤ R0 +

Δr

2

&
l

2
+

Δz

2
< |zj | < Zmax −

Δz

2

−K (x)
z −K (x−)

r S(x)
2 −K (x+)

r −K (x)
z

ri = R0 +
Δr

2
& |zj | = l

2
+

Δz

2
−K (x)

z −K (x−)
r S(x)

2 −K (x+)
r −K (x)

z

ri = R0 +
Δr

2
& |zj | < l

2
−K (x)

z 0 S(x)
+ −K (x+)

r −K (x)
z

Δr

2
< ri < R0 & zj =

l

2
+

Δz

2
0 −K (x−)

r S(x)
1 −K (x+)

r −K (x)
z

Δr

2
< ri < R0 & zj = −

l

2
−

Δz

2
−K (x)

z −K (x−)
r S(x)

1 −K (x+)
r 0

ri =
Δr

2

&
l

2
+

Δz

2
< |zj | < Zmax −

Δz

2

−K (x)
z 0 S(x)

2 −K (x+)
r −K (x)

z

ri = Rmax −
Δr

2

& |zj | < Zmax −
Δz

2

−K (x)
z −K (x−)

r S(x)
2 0 −K(x)

z

Δr

2
< ri < Rmax −

Δr

2

& zj = Zmax −
Δz

2

−K (x)
z −K (x−)

r S(x)
2 −K (x+)

r 0

Δr

2
< ri < Rmax −

Δr

2

& zj = −Zmax +
Δz

2

0 −K (x−)
r S(x)

2 −K (x+)
r −K (x)

z

ri =
Δr

2
& zj = Zmax −

Δz

2
−K (x)

z 0 S(x)
2 −K (x+)

r 0

ri =
Δr

2
& zj = −Zmax +

Δz

2
0 0 S(x)

2 −K (x+)
r −K (x)

z

ri =
Δr

2
& zj =

l

2
+

Δz

2
0 0 S(x)

2 −K (x+)
r −K (x)

z

ri =
Δr

2
& zj = −

l

2
−

Δz

2
−K (x)

z 0 S(x)
2 −K (x+)

r 0

ri = Rmax −
Δr

2
& zj = Zmax −

Δz

2
−K (x)

z −K (x−)
r S(x)

2 0 0

ri = Rmax −
Δr

2

& zj = −Zmax +
Δz

2

0 −K (x−)
r S(x)

2 0 −K(x)
z

ri < R0 & |zj| < l

2
0 0 1 0 0
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SINGLE-SEED CALCULATIONS IN 1D AND 2D 19

values of i, j.Once the new number densities are known
in all ring elements, the alpha dose components are
updated:

Dose(p+1)
𝛼 (RnPo; i, j) = Dose(p)

𝛼 (RnPo; i, j)

+
E𝛼(RnPo)

𝜌
𝜆Rnn(p+1)

Rn,i,j Δt

(C18)

Dose(p+1)
𝛼 (BiPo; i, j) = Dose(p)

𝛼 (BiPo; i, j)

+
E𝛼(BiPo)

𝜌
𝜆Bin

(p+1)
Bi,i,j Δt

(C19)

As for the 1D case, the time step can be modified in
many ways. Here we chose to update it according to
the relative change in the overall activity (sum over all
isotopes in all ring elements).
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